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EFFECT OF WAVE FORMATION

DURING SHOCK-WAVE COMPACTION OF POWDERS

UDC 539.374+539.26S. P. Kiselev and V. P. Kiselev

The problem of shock-wave compaction of a metal powder enclosed in a metal container with a
transverse partition is solved. A model of wave formation on the partition and in the compact
adjacent to the partition is proposed; the model is based on the loss of strength in the powder due to
collapsing of pores and to development of instability of the partition being compressed in the shock
wave.
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Introduction. Shock-wave compaction of powders is widely used for obtaining materials with prescribed
properties [1–3]. One of the drawbacks of this method is origination of various inhomogeneities in the compact. For
instance, compaction of a powder with a “central body” leads to formation of a “cold” layer in the compact [3]; the
reasons for origination of this layer were considered in [3–5].

The experiments performed in [6] revealed a new type of inhomogeneities, which arise in shock-wave com-
paction of a copper powder in a cylindrical ampoule with transverse partitions made of transformer steel. The
inhomogeneities were related to wave formation in transverse partitions and in adjacent layers of compacts. Ad-
ditional experiments showed that the effect of wave formation after shock-wave loading was not observed if the
ampoule was filled by a solid copper sample instead of the copper powder. The effect was not observed either if
the transverse partitions were made of materials other than transformer steel (copper, aluminum, stainless steel,
or steel St. 20). Results of numerical simulations of powder compaction in an ampoule with a transverse partition
are described in the present paper; based on these results, an explanation for the wave-formation phenomenon is
proposed.

Formulation of the Problem. Figure 1 shows the schematic of powder compaction used in the experiment
of [6], which was numerically simulated in the present work (in contrast to [6], only one partition is considered here,
but this difference is not of principal importance). A cylindrical steel shell was filled by a copper powder (or by a
mixture of copper and molybdenum powders), which was densely packed. Transverse partitions, which were thin
circular plates, divided the powder into several portions for technological purposes. Powder compaction proceeded
in a shock wave generated by a detonation wave excited by detonation of a high explosive (HE) on the shell surface.
It turned out after compaction that wavy deformation of the partitions and adjacent compact was observed if the
partitions were made of transformer steel (see Fig. 1).

The effect of detonation products was simulated by pressure applied to the upper boundary of the shell
P (x, t). The pressure at the detonation-wave front x = Dt was found from the Chapman–Jouguet condition [7] by
the formula PH = (2/(γ + 1))ρHED2, where ρHE is the density of the high explosive, D is the detonation velocity,
and γ = 3. Behind the detonation-wave front, the pressure decreases in the centered expansion wave Dt/2 < x < Dt

with an adjacent region 0 < x < Dt/2, where the pressure is constant [7]. The pressure behind the detonation-wave
front is calculated by the following formula [7]:
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Fig. 1. Schematic of powder compaction in a cylindrical container.
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, cH =
γD

γ + 1
, c =

{
x/(2t) + D/4, D/2 < x/t < D,

D/2, x/t < D/2.

The stress–strain state of the shell and partition was calculated within the elastoplastic Prandtl–Reuss
model [8].

In mathematical modeling of powder compaction, it should be borne in mind that the powder is densely
packed before it is subjected to a shock wave. Then powder compaction proceeds owing to collapsing of pores and
no slipping of powder particles is observed. Loads considered in the present paper imply complete collapsing of
pores in the shock-wave front and formation of strong bonds between powder particles. Powder compaction by a
shock wave, therefore, can be described by a model of a porous elastoplastic material [9, 10], and the compact being
formed can be described by the Prandtl–Reuss model.

The problem involves several contact boundaries, namely, the shell–powder, partition–powder, and partition–
shell boundaries. An ideal contact condition was imposed on all contact boundaries: displacements of the corre-
sponding points of two contacting bodies are identical, and the forces of interaction are identical in magnitude and
opposite in direction. In the present case, this approximate condition is valid because the stress of dry friction
between the contacting bodies under loads [6] P ≈ 2 GPa is of the order of the yield strength of the material:
σf = fP ∼ Ys. The numerical solution of the problem was based on a “cross” finite-difference scheme adapted in
[8] to calculations of elastoplastic media. A predictor–corrector-type algorithm was used to calculate the contact
boundary of two contacting bodies with an ideal contact. The predictor stage involved calculations of new positions
and velocities of the boundaries of each body without allowance for the influence of the second body. After that,
at the corrector stage, the resultant boundaries were corrected with allowance for the ideal contact conditions. The
velocity of the contact boundary was found from the law of conservation of momentum in an inelastic collision of
contacting boundary cells with velocities obtained at the predictor stage. Conditions of an ideal contact can be
demonstrated to be satisfied in this case. The algorithm was previously used for a one-dimensional case (see [11])
and is extended to a two-dimensional case in the present work.

Mathematical Model of the Powder. The behavior of the powder under shock-wave loading was
simulated within the framework of the mathematical model of a porous elastoplastic material, which was proposed
in [9, 10]. The equations of continuity, motion, and energy have the form

∂ρ

∂t
+ ∇iρvi = 0, ρ = ρsm2, m1 + m2 = 1, ρ

dvi

dt
= ∇jσij , ∇i =

∂

∂xi
,

d

dt
=

∂

∂t
+ vi∇i, ρ

dES

dt
= σij ε̇ij , ε̇ij =

1
2

(∇ivj + ∇jvi), (1)

σij = −Pδij + Sij , m1 = (4/3)πa3n, i, j = 1, 2, 3,
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where a and n are the pore radius and concentration, m1 is the volume concentration of pores (porosity), m2 is the
volume concentration of the material, ρ is the mean density, σij and ε̇ij are the mean stress tensor and strain-rate
tensor, vi is the ith component of velocity, ES is the specific internal energy, P is the pressure, and Sij is the
stress-tensor deviator.

System (1) was closed by the equation of state of the porous body

Ṗ = Ṗcold + Ṗheat, Ṗcold = −Kε̇e
kk, Pheat = ΓρEheat,

ES = Ecold + Eheat, Ecold = (K1(εe
kk)2/2 + µ1e

e
ije

e
ij)/ρ, eij = ee

ij + ep
ij ,

(2)

where K1 and µ1 are the mean elastic moduli of volume compression and shear of the porous material.
The stress-tensor deviator is determined by Hooke’s law

∇
Sij = 2µėij , ėij = ε̇ij − (1/3)ε̇kkδij (3)

in the region of elastic strains (3/2)SijSij < Y 2 and by the Prandtl–Reuss equations

ėij =
∇
Sij/(2µ) + λ̇Sij , (3/2)SijSij = Y 2,

∇
Sij = Ṡij − ωikSkj − ωjkSki, ωij = (vi,j − vj,i)/2

(4)

in the plastic region (the symbol ∇ indicates the Jaumann derivative and the dot over the symbol means the
substantial derivative with respect to time). In system (1)–(4), Pcold and Pheat are the cold and heat pressures,
Ecold and Eheat are the cold and heat energies, respectively, K is the modulus of volume compression, µ is the shear
modulus, Y is the yield strength, Γ is the Grüneisen coefficient, and ωij is the antisymmetric tensor of velocity of
revolution of the medium; each of the subscripts i, j, and k runs through the values of 1, 2, and 3; summation
is performed over repeated subscripts; the subscript after the comma indicates the derivative with respect to the
corresponding coordinate; the superscripts “e” and “p” refer to elastic and plastic strains, respectively.

The yield surface of the porous material has the form

Y 2 =

⎧
⎨
⎩

Y 2
s m2

2 − (9/4)P 2m1, |P | � |P0|,
Y 2

s m2m
2
e , |P0| < |P | � |P∗|,

0, |P | > |P∗|, (5)

m2
e =

1 + m2
1

m2
− 2

m1

m2
cosh

3P

2Ys
, me + mp = 1,

where |P∗| = (2/3)Ys ln (1/m1), |P0| = (2/3)Ys(1 − m1), and me and mp are the fractions of the cell volume in the
elastic and plastic states, respectively. It follows from Eqs. (5) that the yield strength decreases with increasing
pressure |P | and vanishes at |P | = |P∗|. Note that the yield surface constructed by Eqs. (5) is close to Garson’s
yield surface [12].

For |P | < |P0|, elastic loading (unloading) occurs, and the following formulas are valid:

K = K1 = Ksm2

/(
1 +

m1

2
1 + ν

1 − 2ν

)
, µ = µ1 =

µsm2

1 + m1/2
, ε̇e

kk = − ρ̇s

ρs
(6)

(Ks and µs are the elasticity moduli of the solid material; ν is Poisson’s ratio). For |P0| < |P | < |P∗|, a plastic zone
is formed around the pore, the strains acquire an elastoplastic character, and the following formulas are valid:

K = K2 = Ksm2

/(
1 +

1 + ν

3(1 − 2ν)
Y

|P | mpm2

)
, µ = µ2 =

µsme

me/m2 + mp/2
,

ee
ij = Sij/(2µ1), ε̇e

kk = (K2/K1)ε̇kk, ε̇kk = −ρ̇/ρ.

(7)

Equations (7) refer to the case of loading (PṖ > 0). Under unloading (PṖ < 0), the material is described by Eqs.
(6) to a certain extent; subsequent loading from this state occurs in an elastic manner. If |P | > |P∗|, the pores lose
their stability and collapse. In this case, the yield strength (5) vanishes; hence, the components of the stress-tensor
deviator are also equal to zero (Sij = 0), and the equations of the spherical part of the stress tensor are determined
by the first three equations in (2), which imply that
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K = K1, Γ = ΓsK/K1, ε̇e
kk = ṁ2/m2 − ρ̇/ρ, (8)

where Γs is the Grüneisen coefficient of the solid material.
It follows from the equation m1 + m2 = 1 that the volume concentration of the material increases (ṁ2 > 0)

in the case of pore collapsing (ṁ1 < 0). The value of m2 is found from the Carroll–Holt equation [13], which has
the following form with inertial terms being neglected [10]:

P =
2
3

Ys ln
α

α − 1
− 4

3
η

α̇

α(α − 1)
(9)

(this equation contains an auxiliary variable α = 1/m2; η is the material viscosity).
The specific heat energy Eheat is calculated as [10]

Eheat = E1 + E2,

E1 =
4η

3ρs

∫
α̇2 dt

α(α − 1)
, E2 =

2Ys

3ρs

{
α0 ln

α0

α
− (α0 − 1) ln

α0 − 1
α − 1

+ (α0 − α) ln
α

α − 1

} (10)

(E1 and E2 are the mean values of dissipated energy in the case of viscous and plastic collapsing of pores, respec-
tively).

Note, if the porosity equals zero (m1 = 0), system (1)–(10) coincides with the system of equations in the
Prandtl–Reuss model. For this reason, the behavior of the solid elastoplastic material is described by Eqs. (1)–(10)
with m1 = 0.

The above-described model was first proposed in [9]. Based on this model, problems of the impact of solid
projectiles on porous iron and aluminum plates were solved [14, 15], and good agreement between the predicted
and experimentally measured shock-wave profiles was reached. The transition from regular to irregular interaction
of oblique shock waves in an aluminum powder was examined in [16] with the use of this model. The boundaries of
the transition from one interaction mode to the other are consistent with the experimental results of [17]. Thus, it
was demonstrated in [14–16] that the present model offers a correct description of shock-wave processes in porous
materials and powders.

Results of Calculating Powder Compaction in a Cylindrical Container with a Transverse Parti-
tion. Numerical calculations were performed for an axisymmetric case; the geometrical and physical parameters in
the calculations followed the test conditions of [6]. The cylindrical steel shell filled by the powder had the following
geometrical and mechanical parameters: length L = 6 cm, radius R = 1.6 cm, thickness H = 0.2 cm, volume
compression modulus Ks = 1.7 · 102 GPa, shear modulus µs = 0.8 · 102 GPa, and yield strength Ys = 0.3 GPa.
The transverse partition was a circular plate of radius R = 1.6 cm and thickness h = 0.04 cm, which was placed at
a distance l1 = 2.4 cm from the left end of the shell (see Fig. 1). The shell length and radius in the calculations
were chosen to be their halved values used in the experiment [6]. This difference is of no principal importance; such
values were chosen to have a moderate size of the computational domain. The transverse partition was made of
transformer steel [6], which is much more brittle that ordinary steel; therefore, the yield strength in the calculations
was chosen to be Ys = 1.2 GPa, and the elastic moduli had the same values as those for the steel shell. The
copper powder was simulated by a porous body with an initial porosity m0

1 = 0.35 and a pore radius a0 = 20 µm.
The following parameters of copper were used in the calculations: ρs = 8.9 · 103 kg/m3, Ks = 1.39 · 102 GPa,
µs = 0.46 · 102 GPa, Ys = 0.2 GPa, and η = 103 Pa · sec.

At the time t = 0, the detonation wave starts propagating along the shell surface from left to right with a
velocity D = 3.6 km/sec; the pressure of detonation products at the Chapman–Jouguet point is PH = 2.9 GPa.
An oblique shock wave penetrates into the shell and then into the powder and the plate. At the initial time t = 0,
the plate surface is assumed to be subjected to a small perturbation, so that the left Zleft and right Zright contact
boundaries between the plate and the powder obey the equations

Z0
left = l1 + δa sin (2πr/λ), Z0

right = Z0
left + h (δa � h � λ), (11)

where δa = 12.5 µm is the perturbation amplitude and λ = 2 mm is the wavelength; the superscript 0 at the
coordinates of the contact boundaries indicates the time t = 0. In solving the problem, we have to determine the
evolution of this perturbation and the coordinates of the contact boundaries Zleft(t) and Zright(t) for t > 0.

The isobars in the powder, plate, and shell in the region 0.20 cm < z < 2.65 cm at the time t = 12.8 µsec
are plotted in Fig. 2a. The pores collapse behind the shock-wave front, and the isolines of porosity are similar to
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Fig. 3. Time evolution of various parameters indicated at the y axis: porosity m1|A (1), pressure in
the powder P |A (GPa) (2), stress in the plate (−σr)|B (GPa) (3), pressure in the plate P |B (GPa)
(4), and dimensionless amplitude of the plate perturbation δZleft/δZ0

left (5).

the isobars in the powder. The shock-wave width is determined by the pore-collapse time; hence, the shock wave
in the powder is strongly “blurred.” Figure 2b shows the isobars at the time t = 32 µsec, when the shock wave
has already been reflected from the centerline and reached the shell surface, whereas an expansion wave has been
formed near the axis. The pores have been already collapsed by that time, and the plate shape remains unchanged
in the sequel. Shock-wave loading is seen to induce a significant wavy deformation of the plate surface.

Figure 3 shows the porosity m1 and pressure P in the powder at the point A, the dimensionless amplitude of
the plate perturbation δZleft/δZ0

left, the pressure P , and the stress σr in the plate at the point B, where δZleft/δZ0
left =

(Zleft(t)|max − Zleft(t)|min)/(2δa), as functions of the time t. The points A and B are located on different sides of
the powder–plate contact boundary [z = Zleft(t) and r = 0.87 cm] (see Fig. 1). The growth of plate-surface
perturbations is observed only during the pore collapse. Note that the perturbations do not grow if the loss of
strength of the copper powder in the case of the pore collapse is ignored in the equations for the porous body and
assume that Y = Ys = const instead of Eq. (5). Curves 2 and 3 in Fig. 4 show the contact boundaries of the
plates Zleft = Zleft(r) at the time t = 32 µsec, which were obtained in two calculations under identical loading
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Fig. 4. Plate–powder contact boundaries Zleft(r) at the times t = 0 (curve 1) and 32 µsec for first
and second calculations (curves 2 and 3, respectively).

conditions (curve 1 shows the position of the plate at the initial time). The full system (1)–(10) was solved in
the first calculation (curve 2). The second calculation (curve 3) was based on the same system of equations with
Y = Ys = const instead of Eq. (5). The amplitude of perturbations in the second case changes insignificantly, though
the plate experiences a greater deformation than in the first case. The latter is related to focusing of the shock
wave converging toward the axis of symmetry, which leads to significant nonuniformity in the fields of velocities
and displacements in the powder [18].

Discussion of Results. As was noted above, the growth of perturbations of the plate and the associated
wave formation start behind the shock-wave front in the powder, where the pore collapse and the loss of strength
of the powder occur. The plate behind the shock-wave front experiences radial compression and is surrounded by
the powder whose mechanical properties are similar to the properties of a liquid. As a result, instability starts
developing in the plate, and the perturbation amplitude increases. The adjacent powder in this case does not
prevent the growth of perturbations. Velocity perturbations arise in the powder under the action of the plate, and
the powder is displaced from the maximums to the minimums of pressure perturbations. If the yield strength is
constant, elastic stresses arise in the powder and prevent the growth of perturbations in the plate.

Let us evaluate the wavelength and the characteristic time of growth of perturbations of the plate surrounded
by the powder in which the components of the stress-tensor deviator are equal to zero because of the equality Y = 0.
We consider a model problem on stability of a plate subjected to radial compression and immersed into an ideal
incompressible liquid. The formulation of this problem is similar to the problem of motion of a plate floating on
the liquid surface under the action of pressure in the liquid [19, 20]. Assuming that plate deformations are small
and neglecting nonlinear terms, we rewrite the equations of motion of the plate and liquid from [20] in the form

ρs
∂2ζ

∂t2
= −D

h
∆2ζ + σ̃r

∂2ζ

∂r2
+

(∂σ̃r

∂r
+

σ̃r

r

)∂ζ

∂r
+

2P ′

h
, D =

Eh3

12(1 − ν2)
,

∆ϕ′ = 0, P ′ = −ρ0
∂ϕ′

∂t

∣∣∣
z=Z

,
∂ζ

∂t
=

∂ϕ′

∂z

∣∣∣
z=Z

,

(12)

where ϕ′ and P ′ are perturbations of the potential and pressure, respectively, ρ0 is the liquid density, ζ = Z −Z0 is
the amplitude of the perturbation of the mid-surface of the plate, ρs, E, and ν are the density, Young’s modulus,
and Poisson’s ratio of the plate, respectively, and σ̃r is the mean radial stress in the plate. The last two equations
in (12) express the equality of the normal stresses and velocities at the plate–liquid contact boundary. The plate
displacement ∂ζ/∂t induces an increase in pressure on one side of the plate and an identical decrease in pressure on
the other side; therefore, the last term in the first equation in (12) was doubled, as compared to the corresponding
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term in [20]. Let us consider the behavior of perturbations with a small wavelength λ � R, where R is the plate
radius. In this case, the following inequalities are valid:

1
r

∂ζ

∂r

/ ∂2ζ

∂r2
∼ λ

R
� 1,

∂σ̃r

∂r

∂ζ

∂r

/(
σ̃r

∂2ζ

∂r2

)
∼ σ̃r

σ̃r

λ

R
� 1,

σ̃r

r

∂ζ

∂r

/(
σ̃r

∂2ζ

∂r2

)
∼ λ

R
� 1.

Leaving derivatives of the highest order in Eqs. (12), we obtain

ρs
∂2ζ

∂t2
= −D

h

∂4ζ

∂r4
+ σ̃r

∂2ζ

∂r2
− 2ρ0

h

∂ϕ′

∂t

∣∣∣
z=0

,
∂2ϕ′

∂r2
+

∂2ϕ′

∂z2
= 0,

∂ζ

∂t
=

∂ϕ′

∂z

∣∣∣
z=0

, (13)

where the unperturbed plate surface is placed into the cross section z = 0. The condition of continuity of normal
stresses on the plate surface and small angles of plate-surface deviation from the vertical axis yield the equal values
of stresses σ′

z = σz. Assuming that σ′
z = −P ′ in the liquid, we find the pressure P = P ′ + Sz and the radial

stresses in the plate σr = −P ′ + Sr − Sz. The calculations show that the components of the stress-tensor deviator
averaged over the plate thickness are S̃r − S̃z = −ξYs (ξ ∼ 1), and the pressure in the powder is P ′ � Ys. It follows
from here that the mean radial stress in the plate remains almost constant (σ̃r ≈ −ξYs, where ξ ≈ 1), which is
validated by the calculations (see curve 3 in Fig. 3). Representing, for z < 0, the solution of Eqs. (13) in the form
ζ = ζ0 exp (ikr − iωt), ϕ′ = ϕ0 exp (kz + ikr − iωt), and taking into account that σ̃r ≈ −Ys, we find

ω2 =
(D/h)k4 − ξYsk

2

ρs + 2ρ0/(kh)
,

where ω is the frequency and k = 2π/λ is the wavenumber of perturbations. It follows from here that perturbations
with the wavelength λ > λ∗ are exponentially increasing as

ζ ∼ ζ0 exp
t

τ
, τ ≈ λ

2π

/√
Ys(1 − (λ∗/λ)2)

ρs(1 + 2ρ0/(ρskh))
, λ∗ = 2π

√
D

ξYsh
. (14)

This formulation of the problem on dynamic instability of the plate is similar to the problem formulated in
[21] where stability of an elastic rod under pulsed loading was considered. Following [21], we find the perturbation
wavelength corresponding to the lowest growth time: λ̃ =

√
2λ∗. Note that a similar mechanism of wave formation

during explosive welding, which was related to the loss of stability of the material in the contact region owing to
residual compressive stresses, was considered in a simplified model in [22]. In particular, in contrast to the present
work, Godunov and Sergeev-Al’bov [22] studied the loss of stability of a compressed rod bordering on an elastic
half-plane. A problem in a formulation similar to that in [22] was solved numerically on the basis of the Maxwellian
nonlinear elastoplastic model in [23]. Deformation of a plate under the action of a pressure pulse moving over the
plate surface was considered. This problem allowed modeling physical parameters in the contact region in the case
of explosive welding of two plates [22]. As a result, residual compressive stresses leading to bending of the entire
plate were found, but no wave formation in the plate was revealed by calculations.

Using Eqs. (14), we can find the numerical values of the critical perturbation wavelength λ∗ and the char-
acteristic time of perturbation growth τ . It follows from the second equation in (12) that the cylindrical rigidity of
the plate D in the case of elastic deformation is proportional to Young’s modulus. The calculations show, however,
that simultaneous compression and bending of the plate lead to elastoplastic deformations of the latter. One part
of the plate experiences additional extension owing to bending and is elastically deformed with a modulus E = Ee,
whereas the other part of the plate experiences additional compression and is plastically deformed with a modulus
E = Ep. The distributions of radial stresses σr(z) calculated in three cross sections over the plate thickness (Fig. 5)
support these assumptions. Therefore, instead of Young’s modulus, the second equation in (12) should have the
mean modulus Ek, which takes into account the elastoplastic character of plate deformation. There are different
theories for calculating Ek [24]; in what follows, we use the Engesser–Kármán model [24]. Note that the simplified
equation for the plate [first equation in (13)] coincides with the equation for the rod; therefore, in determining the
mean modulus Ek, we use the corresponding formula for the rod with a rectangular cross section in the Engesser–
Kármán model [24]: Ek = 4EeEp/(

√
Ee +

√
Ep )2. The radial stresses in the plate are the sum of the mean and

moment stresses related to plate bending [25]:

σr =
Ẽ

(1 − ν2)
ε0

r −
Ẽz

(1 − ν2)
∂2ζ

∂r2
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(curve 1), 0.87 (curve 2), and 0.91 cm (curve 3); the corresponding cross sections Nos. 1–3 are
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(the minus sign in the second term is conditioned by the choice of the coordinate system), where ε0
r < 0 is the strain

of the plate mid-surface and Ẽ is the local modulus. Differentiating the left and right sides of this expression with
respect to z, we obtain a formula for determining the local modulus Ẽ from a preset stress distribution σr(z):

Ẽ = (1 − ν2)
∂σr

∂z

/ ∂2ζ

∂r2
.

By means of numerical calculations, we find the plate curvature for r = 0.91 cm, which corresponds to cross section
No. 3 in the insert in Fig. 5: ∂2ζ/∂r2 ≈ 2 ·102 1/m. From the stress distribution σr(z) in this cross section (curve 3
in Fig. 5), we find that the material on the left boundary of the plate is deformed elastically [∂σr/∂z ≈ 104 GPa/m
and Ee = Ẽ(Zleft) = 50 GPa]. The same cross section on the right boundary of the plate experiences plastic
deformation of the material; hence, we have ∂σr/∂z ≈ 2 · 102 GPa/m and Ep = Ẽ(Zright) = 1 GPa. Substituting
these values into the formula for the mean modulus, we obtain Ek = 4 GPa. Determining the cylindrical rigidity
by the formula D = Ekh3/(12(1− ν2)), we use Eq. (14) to find the minimum wavelength of unstable perturbations
λ∗ ≈ 1.3 mm and the characteristic time of growth τ ≈ 1.56 µsec of perturbations with a wavelength λ = 2 mm.
In the experiment of [6], the wavelength of perturbations in the plate was λ0 ≈ 2.5 mm, which was close to the
above-estimated wavelength of the most rapidly growing perturbations λ̃ =

√
2λ∗ ≈ 1.82 mm.

Numerical calculations yield a similar value λ∗ ≈ 1 mm, and the value τ ≈ 6 µsec for λ = 2 mm, which
is greater by a factor of 4. Apparently, the difference in the values of τ is caused by the neglect of powder
compressibility in the simplified model described by Eqs. (12). As is seen from Fig. 3, the change in powder density
in the calculations during the time τ ≈ 6 µsec is approximately 30%.

Three sets of calculations were performed to study the growth of perturbations of the plate depending on
the character of the initial perturbation and strength parameters of the plate.

In the first set of calculations, we changed the perturbation wavelength λ, and the initial perturbation
amplitude remained constant: δa = 12.5 µm. The calculation results are plotted in Fig. 6, which shows the
dimensionless amplitude of the perturbation in the plate ζ/ζ0 = (Zleft(t)|max − Zleft(t)|min)/(2 δa) as a function
of the time t for different wavelengths λ. It is seen that perturbations with wavelengths λ < 1 µm do not grow.
Perturbations with λ in the range of 3 to 4 mm have the maximum growth rate, and then the perturbation growth
rate decreases with increasing wavelength.

In the second set of calculations, we changed the yield strength of the plate in the range 0.2 GPa < Ys

< 1.2 GPa, and the remaining parameters (λ and δa) were constant. The numerical calculations showed that the
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Fig. 6. Dimensionless amplitude of the perturbation ζ/ζ0 of the plate versus the time t calculated for
different perturbation wavelengths: λ = 0.7 (1), 1 (2), 1.5 (3), 2 (4), 3 (5), 4 (6), and 5 mm (7).

dependence of the characteristic growth time of the perturbation on the yield strength has the form τ ∼ 1/
√

Ys,
which agrees with the second formula in (14).

In the third set of calculations, we considered the growth of perturbations as a function of the amplitude
of the initial perturbation of the plate with a constant perturbation wavelength. The maximum perturbation
amplitude turned out to be independent of the amplitude of initial perturbations of the plate δa in a fairly wide
range 0.02 < 2π δa/λ < 0.16, where the perturbation wavelength was λ = 2 mm. If there were no perturbations
of the plate (δa = 0) at the initial time t = 0, they did not arise at later times t > 0 either. Apparently, wave
formation in a plate made of transformer steel is associated with the presence of large-scale inhomogeneities that
act as sources of perturbations in the plate. The issue of the source of initial perturbations is outside the scope
of the present work, as it requires some additional studies. If perturbation have already appeared, however, they
are amplified owing to development of plate instability in the compression wave and simultaneous softening of the
powder due to pore collapsing.

The authors are grateful to S. K. Godunov and V. I. Mali for discussing the formulation of the problem and
intermediate and final results of calculations.
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